Left Menu
Development News Edition

Astronomers determine how disk galaxies evolve so smoothly

Computer simulations are showing astrophysicists how massive clumps of gas within galaxies scatter some stars from their orbits, eventually creating the smooth, exponential fade in the brightness of many galaxy disks.

ANI | Washington DC | Updated: 26-09-2020 07:46 IST | Created: 26-09-2020 07:46 IST
Astronomers determine how disk galaxies evolve so smoothly
Representative image. Image Credit: ANI

Computer simulations are showing astrophysicists how massive clumps of gas within galaxies scatter some stars from their orbits, eventually creating the smooth, exponential fade in the brightness of many galaxy disks. Researchers from Iowa State University, the University of Wisconsin-Madison and IBM Research have advanced studies they started nearly 10 years ago. They originally focused on how massive clumps in young galaxies affect star orbits and create galaxy disks featuring bright centers fading to dark edges.

(As Curtis Struck, an Iowa State professor of physics and astronomy, wrote in a 2013 research summary: "In galaxy disks, the scars of a rough childhood, and adolescent blemishes, all smooth away with time.") Now, the group has co-authored a new paper that says their ideas about the formation of exponential disks apply to more than young galaxies. It's also a process that is robust and universal in all kinds of galaxies. The exponential disks, after all, are common in spiral galaxies, dwarf elliptical galaxies, and some irregular galaxies.

How can astrophysicists explain that? By using realistic models to track star scattering within galaxies, "We feel we have a much deeper understanding of the physical processes that resolve this almost-50-year-old key problem," Struck said.

Gravitational impulses from massive clumps alter the orbits of stars, the researchers found. As a result, the overall star distribution of the disk changes, and the exponential brightness profile is a reflection of that new stellar distribution. The astrophysicists' findings are reported in a paper just published online by the Monthly Notices of the Royal Astronomical Society. Co-authors are Struck; Jian Wu, an Iowa State doctoral student in physics and astronomy; Elena D'Onghia, an associate professor of astronomy at Wisconsin; and Bruce Elmegreen, a research scientist at IBM's Thomas J. Watson Research Center in Yorktown Heights, New York.

Stars are scattered, disks are smoothed The latest computer modelling - led by Wu - is a capstone topping years of model improvements, Struck said. Previous models treated the gravitational forces of galaxy components more approximately, and researchers studied fewer cases.

The latest models show how star clusters and clumps of interstellar gases within galaxies can change the orbits of nearby stars. Some star-scattering events significantly change star orbits, even catching some stars in loops around massive clumps before they can escape to the general flow of a galaxy disk. Many other scattering events are less powerful, with fewer stars scattered and orbits remaining more circular. "The nature of the scattering is far more complex than we previously understood," Struck said. "Despite all this complexity on small scales, it still averages out to the smooth light distribution on large scales."

The models also say something about the time it takes for these exponential galaxy disks to form, according to the researchers' paper. The types of clumps and initial densities of the disks affect the speed of the evolution, but not the final smoothness in brightness. Speed, in this case, is a relative term because the timescales for these processes are billions of years.

Over all those years, and even with model galaxies where stars are initially distributed in a variety of ways, Wu said the models show the ubiquity of the star-scattering-to-exponential-falloff process. "Stellar scattering is very general and universal," he said. "It works to explain the formation of exponential disks in so many cases." (ANI)


TRENDING

OPINION / BLOG / INTERVIEW

New farm bills in India: Focusing on farms or farmers?

... ...

Kenya’s COVID-19 response: Chaos amid lack of information

Confusing numbers and scanty information on how effective curfews and lockdowns have been in breaking transmission have amplified coordination and planning challenges in Kenyas response to COVID-19. Without accurate data, it is impossible t...

Farkhad Akhmedov: Calculating the price of impunity from the law

In insistences such as the battle over the Luna, Akhmedov has resorted to extreme legal machinations to subvert the High Courts decision and keep his assets from being seized. ...

Guinea’s elections hearken back to the autocracy and violence of its past

... ...

Videos

Latest News

31% adolescents battled extreme anxiety in past few months due to COVID-19, says survey

About 31 per cent surveyed adolescents battled extreme anxiety in the past few months worrying about the impact of coronavirus pandemic on their familys financial status, according to a survey of over 7,300 adolescents from four states of J...

Nepal implements Clean Feed Policy, making foreign TV channels ad-free

The clean-feed policy in television broadcasting systems in Nepal has been implemented starting Friday midnight, barring international advertisers from publishing advertisements in foreign television channels. The Clean Feed Policy, announc...

Not a word from tweet-friendly Rahul Gandhi': Sitharaman questions Congress on Hoshiarpur rape

Union Finance Minister and Bharatiya Janata Party BJP leader Nirmala Sitharaman on Saturday slammed Congress for its selective outrage in wake of the alleged rape and killing of a six-year-old girl Hoshiarpur district of Punjab and question...

OnePlus 8T now officially on sale in the US

The OnePlus 8T 5G has officially gone on sale in the U.S. Announced last week, the new flagship phone is available in Lunar Silver and Aquamarine Green color options and a single 12GB256GB memory configuration priced at USD749.Additionally,...

Give Feedback