Thoughtworks XConf Tech Series: Resilience with chaos engineering

Schedule it to be run every week to verify that new changes in software are still meeting availability and resiliency benchmarks and commits that pass these checks should progress further in the pipeline for production deployments.What outcomes does chaos engineering deliver Teams who frequently run chaos engineering experiments enjoy a more than 99.9 availability.

PTI | New Delhi | Updated: 17-11-2021 13:38 IST | Created: 17-11-2021 13:13 IST
Thoughtworks XConf Tech Series: Resilience with chaos engineering
Representative Image Image Credit: Pxfuel
  • Country:
  • India

Sunit Parekh, Solution Architect and Agile Expert at Thoughtworks, and Prashanth R, Lead Engineer at Thoughtworks A predictable system is a myth. System failures are inevitable. The only way out is to be prepared for failures by building resilient systems and we explore chaos engineering as a way to do exactly that.

What is chaos engineering? Chaos engineering or chaos testing is a Site Reliability Engineering (SRE) technique that simulates unexpected system failures to test a system's behavior and recovery plan. Based on what they learn from these tests, organizations design interventions and upgrades to strengthen their technology.

Why do we need chaos engineering? Let's look at an instance where one of our e-commerce customers sees their applications terminating one after another during a Black Friday sale. But, there is no CPU or memory spike. Ultimately, it turns out that writing logs in a file within the container led to running out of disk space. Now, in the microservices world, it's not uncommon for one slow service to drag the latency up for the whole chain of systems. Today's world of microservice architecture and integrated systems ecosystem has moved us from a single point of failure in monolith systems to multi-point failures in distributed systems. To create scalable, highly available, and reliable systems we need newer methods of testing.

How does chaos engineering work? Chaos engineering is like a vaccine. Vaccines are usually a mild form of the disease/virus injected into the blood so our body learns to fight against the actual disease. Chaos engineering puts the system and infrastructure under immense stress scenarios to prepare for better availability, stability, and resilience. The most common problems that every application suffers are CPU or memory spike, network latency, time change during daylight saving time, reduced disk spaces, and application crashes. So, the first step would be to make the infrastructure resilient enough to overcome these disasters at the application level.

There are four major steps when running any chaos test: 1. Define a steady state: Before running chaos tests, define what an ideal system would look like. For instance, with a web application, the health check endpoint should return a 200 success response.

2. Introduce chaos: Simulate a failure like a network bottleneck, disk fill, application crash, etc.

3. Verify the steady-state: Check if the system works as defined in Step 1. Also, verify that the corresponding alerts were triggered via email, SMS, text, slack message, etc.

4. Roll back the chaos: The most crucial step, especially while running in production, is to roll back or stop the chaos that we introduced and ensure that the system returns to normal If the application passes the test, that's evidence the system is resilient. However, if the application fails the test, we'd recommend following the red-green testing cycle — and once the weakness has been identified, fix it and rerun the test.

How to start chaos testing? If teams have just begun adopting chaos engineering, we'd suggest using a simple shell script. However, it's important to run a steady-state hypothesis with continuous monitoring in parallel. As the chaos testing practice matures, we suggest using one of the many open-source or commercial tools.

Gremlin is leading this space and covers most of the use cases • Litmus chaos toolkit is a Kubernetes native, designed for k8s-based applications. You can read more about running a chaos test using this tool here • Istio service mesh is great for network-related chaos such as network delays, errors, etc.

AWS Fault Injection Simulator is a toolkit that helps when conducting chaos experiments on applications deployed in AWS Ideally, chaos testing is best to run in production. However, we recommend that you learn in a lower environment first and then conduct controlled experiments in production later. In one of Thoughtworks' client projects, it took the team six months to learn and practice in a lower environment before everyone (including clients) had the confidence to run chaos tests in production. Once teams get here, they could also automate chaos testing like scheduled jobs in deployment pipelines. Schedule it to be run every week to verify that new changes in software are still meeting availability and resiliency benchmarks and commits that pass these checks should progress further in the pipeline for production deployments.

What outcomes does chaos engineering deliver? Increased availability and decreased mean time to resolution (MTTR) are the two most common benefits enterprises observe. Teams who frequently run chaos engineering experiments enjoy a more than 99.9% availability. 23% of the teams reduced their MTTR to under 1 hour and 60% to under 12 hours with chaos engineering.

For more on our experiences with chaos engineering, listen to our talk here. XConf is Thoughtworks' annual technology event created by technologists. It is designed for technologists who care deeply about software and its impact on the world. Thoughtworks is a global software and technology consultancy that integrates strategy, design, and engineering. We are 10,000+ people strong across 48 offices in 17 countries. Over the last 25+ years, we've delivered extraordinary impact together with our clients by helping them solve complex business problems with technology.

(This story has not been edited by Devdiscourse staff and is auto-generated from a syndicated feed.)

Give Feedback