Left Menu
Development News Edition

Why you won't be working on quantum computers any time soon

PTI | Lindau | Updated: 14-07-2019 13:30 IST | Created: 14-07-2019 13:25 IST
Why you won't be working on quantum computers any time soon
Image Credit: Pixabay

The long sought-after quantum computers - a superfast technology touted as the next big revolution in computers - may not be in the market in at least 10 years, according to scientists, including German Nobel Laureate Klaus Von Klitzing. Quantum computers leverage the characteristics of quantum mechanics to solve problems faster than regular computers.

They have long been thought to spur the development of new breakthroughs in science, life-saving medications and, machine learning and diagnosing diseases faster. Klitzing, 76, who was awarded the 1985 Nobel Prize in Physics for the discovery of the integer quantum Hall effect, said that quantum computers, when available, will not replace the traditional systems in use and would mostly be applied in research and industries.

"I don't see quantum computers launching in another 10 years, and even if they come I feel they won't be available for day-to-day calculations for common people," Klitzing told PTI during the 69th Lindau Nobel Laureates Meeting here. Elena Jordan from the National Institute of Standards and Technology (NIST) in the US agreed with Klitzing.

"Quantum computers that can outperform classical computers will not be available in the near future. This is because they are still in the development phase," said Jordan, a postdoctoral researcher affiliated to the University of Colorado Boulder. "There are small quantum computers that can be seen as a proof of principle, but the majority of research groups are still trying to improve single gate operations like better fidelity and increased speed. They are far from offering a fully programmable quantum computer with a large number of qubits," she told PTI.

Jordan is hopeful that there will be useful quantum simulators that can only be used for a limited kind of tasks - that is to simulate a different quantum system which is hard to study otherwise. "These simulators will be of interest for basic research," said Jordan.

While a classical computer has a memory made up of bits, where each bit is represented by either a one or a zero, a quantum computer, on the other hand, maintains a sequence of qubits, which can represent a one, a zero, or any quantum superposition of those two qubit states. "Complex phenomena in nature, which are otherwise difficult to realise in a laboratory or intractable on a classical computer, can be simulated in a quantum computer. A quantum computer will be the next home for innovative ideas and theories. Based on the new theories, new materials, drugs or devices can be manufactured. This may eventually help us in technical advancement and improving human health," noted Manoj K Joshi from the Institute for Quantum Optics and Quantum Information in Austria.

"Simple and small quantum computers already exist in laboratories but if you ask about a fully-fledged machine running on its own with its full power perhaps we will have to wait for that a bit," said Joshi, noting that some initiatives from the corporate sides, such as IBM Q, DWave and Google AI are already in place. Klitzing, the director of the Max Planck Institute for Solid State Research in Germany said that quantum computers may be helpful in limited fields while normal computers are a backbone of the society.

"I don't think if we will ever need a quantum computer inside a smartphone or for the purpose of solving general arithmetic problems. It will have applications in research as well on the technical/corporate side," Joshi, who is also associated with the University of Innsbruck in Austria told PTI. The scientists think that it is expected that quantum computers can be used to solve hard optimization problems, guarantee secure communication, and help to find new molecules for medication or fertilizers that can make life better for many people.

"I think classical computers will remain most important for general use. In the future, it might be that a smaller quantum computer part is used for secure communication, true random number generators in the computers that can, for example, be used for encryption," said Jordan. "An important point is, that quantum computers are only expected to outperform classical computers on certain tasks, not in general," she said.

Jordan feels, in research and industry, quantum processors can become useful for certain optimization problems that are hard problems for classical computers and cannot be solved efficiently. For example, she said, Microsoft is developing quantum computer algorithms that calculate the structure of new molecules that are optimized for medication or fertilizers.

However, Jordan noted that fully programmable quantum computers with a large number of qubits are expected to outperform classical computers on certain tasks, but not in general. "From the laboratory side, many countries in Europe, China and the USA are putting their efforts to build small quantum machines. At the moment they are limited to tens of qubits only and are being used only for testing toy models in science," Joshi added.



Pandemic must be impetus, not obstacle, for clean water access

To make matters worse, there are suspicions that the inadequacy of wastewater treatment methods in California, the rest of the USA, and indeed around the world may help to propagate the disease even more widely. ...

3D printing and the future of manufacturing post COVID-19

The on-demand, customizable, and localized manufacturing of product components facilitated by 3D printing has the potential to redefine manufacturing but there are certain technical, mechanical, and legal limitations that, unless ...

How UK’s 'best prepared' healthcare system failed to gauge COVID-19

The UK is proud of their public health system and its unlike any other country as around 90 percent of British public supports the founding principles of National Health Service. But without accurate data being available to stakeholders in ...

Poor on IHR capacity progress in 2019, WHO says Cambodia tops COVID-19 response

Despite being in proximity to Hubei, the original epicenter of COVID-19 pandemic, Cambodia has reported just 226 confirmed cases and zero deaths. After seeing the data, WHO appreciated Cambodias healthcare information system but experts dou...


Latest News

Phil Twyford launches Rail Safety Week

Despite the Government installing safety upgrades around the country, people should still take care around rail crossings, said Transport Minister Phil Twyford launching Rail Safety Week.Phil Twyford said installing safety infrastructure is...

Hong Kong media tycoon Jimmy Lai arrested under security law

Hong Kong media tycoon Jimmy Lai was arrested on Monday on suspicion of collusion with foreign powers, his aide said, in the highest-profile use yet of the new national security law Beijing imposed on the city after protests last year. Jimm...

Golf-'Wasn't meant to be,' says Koepka after third-peat bid falls flat

Brooks Koepkas challenge at the PGA Championship went up in smoke with a 74 in the final round at Harding Park on Sunday but the American said he was always facing long odds to win the event for a third straight year. Koepka went into the f...

Australia borders to stay shut as COVID-19 daily deaths reach record

Australian Prime Minister Scott Morrison said internal border closures were unlikely to lift before Christmas, as the country on Monday reported a record single day rise in COVID-19 deaths. There was, however, some evidence that drastic loc...

Give Feedback